Customer Testimonial

LEAPsM Oil Analysis Program

Cup Manufacturing Company in the Southeast U.S.

Cone Drive Gearbox

- Identified wear metals and problematic oil mixing
- Taught customer how to read and understand results, providing helpful analysis rather than just a stack of reports
- Saved \$26,552 in labor and equipment during first four months

Customer Profile

A cup manufacturing company located in the Southeast U.S. produces single-use products for beverages in the retail and food service markets.

Application

The manufacturer uses Cone Drive gearboxes to turn the cup-making machine.

Challenge

The company was losing the main Cone Drive gearboxes at an average rate of one per month at a cost of \$6,500 per gearbox, resulting in an annual equipment loss of \$78,000. In addition, it took two men six hours to take an old gearbox out and replace it with a new Cone Drive. The new maintenance manager wanted to reduce his equipment downtime and increase his plant's production.

Solution

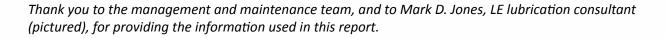
The maintenance manager asked Mark D. Jones, LE lubrication consultant, if he could help. Mark's first recommendation was to pull oil samples on nine Cone Drive gearboxes and a new sample of the Chevron HiPerSYN® 320 Oil. Mark explained to the customer that – using LEAP Oil Analysis – the samples would report viscosity, wear particles, additive package, water and ISO cleanliness level. The next step would be to check the manual and ensure that the correct lubricant was being used.

A significant aspect of the LEAP Oil Analysis Program is the LE consultant walking the customer through the report, explaining the results and teaching the customer how to read the report. When the customer's reports came back within a week, Mark showed the maintenance manager that two different types of oils were being used, and that the oils were being mixed. Cone Drives require either an ISO 460- or 680-grade synthetic oil due to the constant heat used during production. The customer had been using an EP gear oil and a Chevron ISO 320-grade synthetic oil. The Chevron oil could not hold up to the load and heat, and was breaking down by itself. When the two oils were mixed, the oil collapsed completely.

Armed with this information from the LEAP Oil Analysis, Mark recommended to the customer that all the gearboxes be flushed with LE's Monolec[®] R&O Compressor / Turbine Oil (6405) at no load, and then drained. After the flushing, he recommended the use of LE's Monolec Synthetic Industrial Lubricant (9460) in the Cone Drive.

Results

In the first four months after switching to the LE oil, the manufacturer lost no more cone drives. This saved the company \$26,000 in cone drives and \$552 in labor (\$23 per hour), for a projected annual savings of \$78,000 in equipment and \$6,624 in labor.


The customer is pleased with the results and has made additional reliability improvements, including the installation of Esco oil sight glass levelers and gearbox adapter kits for the addition of desiccant breathers and off line filtration.

The Lubrication Reliability Source™

5 RI ECC HV4 NIT OR PPI LAS	T ID IMMER CO OND ID 40A025-7 T TYPE M GEAR LICATIO TICS	YA N										1										СОМ	PANY I	NFORM	IATIO
ATI	OUNT NI E SAMPL E RECEI	ED		0	9300 8/01 8/10	/09	1900)	23											LL SEVE						
	E COMPL				8/12											_				ACTIO	on sug	GGESTER		-	
UBI	CKING # IUFACTU E MFR	RER/M			9079 HEVI	RON											D	1		2	3	3	Å		
IC	E TYPE - RON RAT	TING		0			OIL	ISO 32	20								NOR	MAL		ABNO	RMAL		CRITICAL		
UM YD	P CAPAC SYSTEM	CITY 1 PRESS	SURE		.00													AB # 54316		I I		NALYS RNF	т		
ом	MENTS th	nat is ide nanufact	entifie urer,	d for t type a	his u nd/o	nit. (r gra	This de co	does r	ot imp ident	s SIGN bly that ified for	IFIC t the or thi	ANTLY lubrica s unit;	LOW ant d Won	; Flag oes no m gea	ged ac ot mee or meta	t prope al is at a	evels a API, MINO	SAE, (ferent that or ISO cla /EL; Abras	ssificat sives (s	tions.) silicon); Is the /dirt) a	e lubrica ire at a	ant	
юм	MENTS th	nat is ide nanufact	entifie urer,	d for t type a um is r	his u nd/o nost	nit. (r gra likel	This de co y in t	does r	ot imp ident	s SIGN bly that ified for	IFIC t the or thi	ANTLY lubrica s unit; a (Dirt co	LOW ant d Won (); AC	; Flag oes no m gea	ged ad ot mee or meta JMBER	ditive l t prope al is at a	evels a r API, MINO HTLY	SAE, (EL; Abras Lubrican	ssificat sives (s	tions.) silicon); Is the /dirt) a knowled	e lubrica ire at a iged;	MODER	ATE
SAMPLE #	MENTS th	C H R O M I	entifie urer,	d for t type a um is r	his u nd/o nost	nit. (r gra likel	This de co y in t	does r	ot imp ident	s SIGN bly that ified for	IFIC t the or thi	ANTLY lubrica s unit; a (Dirt co	LOW ant d Won (); AC	(; Flag oes no m gea CID NU	ged ad ot mee or meta JMBER	ditive l t prope al is at a	MUL MUL MUL MUL MUL MUL MUL MUL MUL MUL	SAE, (DR LEV HIGH; HIGH;	EL; Abras Lubrican	ssificat sives (s	tions.) silicon); Is the /dirt) a knowled	e lubrica ire at a iged; DITIVE I	MODER	ATE
SAMPLE		C H R O M I U	N I C K E L	d for t type a um is r W A L U M I N U	EAR I PI C P E	mit. (r gra ilikel	L E A	does r prrectly he for	C A M I U	s SIGN bly tha ified fo lumina s I L V E	V A N A D I U	ANTLY lubrica s unit; a (Dirt CO MI S I L I C O	LOW ant d Won (); AC	S O D U	ged ad bt mee ir meta JMBER M M F O T A S S I U	T I T A N U	MUL MUL MUL MUL MUL MUL MUL MUL MUL MUL	A N N SAE, (DR LEV HIGH) ITI-SO TALS	M A N C C C C C C C C C C C C C C C C C C	B B B B B C B C B C C C C C C C C C C C	tions.) silicon ge acl M A G N E S I U); Is the /dirt) a knowled ADI C A L C I U	e lubrica irre at a jged; DITIVE I PPN B A R R I U	MODER. MODER. METALS 4 P H O S P H O R O U	ATE Z I N
SAMPLE # 1	I R O N	C HR R O UNIT	N I C K E L	d for t type a um is r W A L U M I N U M	EAR I PI C O P E R	mit. (r gra ilikel	L E A D	toes r prrectly he for	C A D M I U M	s SIGN bly tha ified fo lumina s I L V E R	V A N A D I U M	ANTLY lubrica s unit; a (Dirt CO Mi S I L I C O N S 55	LOW ant d Won :); AC	; Flag oes no m geas CID NU CID NU MINAN S - PPI S S O D D I I U M MINAN S - PPI I I I I	ged ad ot mee ir meta JMBER M P O T A S S I U M	T I T I T I U M	MUL MUL MUL MUL MUL MUL MUL MUL MUL MUL	A N Y Y	M A L Lubrican M A L Lubrican M A N L L S UN C Lubrican M A N L L S U M	B B B B B C R O R O N	MAGN SILICON GE ACL); Is the /dirt) a knowled ADI C A L C I U M	e lubrica ire at a iged; DITIVE I PPN B A R I U U M	MODER. MODER. METALS 4 P H O S P H O R O U S	ATE Z I N C
SAMPLE # 1	I I R O N 123	C H H R O M I UNIT TIME	N I C K E L J	d for t type a um is r W A L U M I N U M 35	his und/or nost EAR I PI E R 440	nit. (r gra likel META PM	This de co y in t L E A D 6	toes r rrrectly he for	C A D M I U M O	s SIGN bly tha ified fo lumina S I L V E R O	V A N A D I U M O	ANTLY Iubrica; s unit; a (Dirt CO M I L I C O N S S S I L I C O N S S	LOW ant d Won); AC	; Flag oes not m gea CID NU MINAN S - PPI S O D I I U U M M 61	ged ac ot mee ir meta JMBER M P O T T A S S S I U M 3	T I T I T A N I U M 4 I I I M M I I I M M	MUL MUL MUL MUL MUL MUL MUL MUL MUL MUL	SAE, () R LEV HIGH; LTI-SOCTALS A N T I M O N Y 1 1 6 M I	MA MA A N Lubrican URCE PPM M A A N L G I A T N H E M 0 1 0 M I N L D C C C C C C C C C C C C C	B B B B C R C O N O I I I I I I	M A G N E S I U M O); Is the //dirt) a knowled ADI C A L C I U M 9 21 M I	e lubrica ire at a dged; DITIVE I PPN B A R I U M M 1 38 M I	MODER METALS 1 P H O S P H O S P H O C S P H O C S 70 M I	ATE Z I N C 187 100 M I
SAMPLE # 1	I I I I I I I I I I I I I I I I I I I	C HR C HR C HR O UNIT TIME LUBE TIME	N I C K E L U B E	d for t t type a um is r W A L U M I N M 35	C O P P E R A 440	nit. (r gra likel META PM	This de co de co y in t L E A D G U W A T E R	toes r Trrecth he for	C A D M I U U M O O V I S S 100C	s SIGN bly tha lified fc lumina S I L V E R O O	VIFIC. t the or this v A N A D I U M O T B N Tota	ANTLY Iubrica; s unit; a (Dirt CO M I L I C O N S S S I L I C O N S S	LOW ant d Won); AC INTAN ETAL:	; Flag oes nr m gea CID NU MINAN S - PPI S O D D I I U U M 61	ged ac ot mee unimee MBER T M M P O T T A S S S S O C O D	T I I A N I U M A A N I C R O	MUL MINCO HTLY MUL MUL MUL MUL MUL MUL MUL MUL MUL MUL	SAE, < R LEV R LEV R LEV HIGH; LTI-SO TALS A M I C R O	M A L G I I O M A A L G I T S U C E M O 10 M I C R O	B B O R O N I I G C R O N N	M A G N E S I U M O); Is the //dirt) a knowled ADI C A L C I U M S S C A L C I U M S S C R O	e lubrica ire at a dged; DITIVE I PPN B A R I U U M 1 38 M I C R O	Ant MODER METALS 4 P H O S P H O R O U S 4 55 70 M I C R O N	Z Z I N C 187 1000 M I C R O N
SAMPLE # 1 SAMPLE # 1 1 0 0	I R O N 123 DATE SAMPLED DATE RECEIVED	C HR C HR C HR O UNIT TIME LUBE TIME	N I C K E L U B E CHG Y	d for t t type a um is r W A L U M I N U M 35	C O P P E R A 440	nit. (r gra likel META PM	This de co de co y in t L E A D G U W A T E R	toes r rrrecth he forn T I N 54	C A D M I U U M O O V I S S 100C	S SIGN by tha lifted fc lumina S I L V E R 0 0	VIFIC. t the or this v A N A D I U M O T B N Tota	ANTLY Iubrica; s unit; a (Dirt CO M I L I C O N S S S I L I C O N S S	LOW ant d Won); AC INTAN ETAL:	; Flag oes nr m gea CID NU MINAN S - PPI S O D D I I U U M 61	ged ac ot mee tr meta MBER M P O T T A S S S I U U M M 3 3 SO C C O D E	T I T I A N I U M A A M I C R O N	MUL MINCO HTLY MUL MUL MUL MUL MUL MUL MUL MUL MUL MUL	SAE, 4 R LEV R LEV R LEV HIGH; LTI-SOC TALS A M I C R O N	M A L G I I O M A A L G I T N H E I S U E M 10 M I C C R O N	B B O R O N I I G C R O N N	M A G N E S I U M O); Is the //dirt) a knowled ADI C A L C I U M S S C R O N	e lubrica ire at a dged; DITIVE I PPN B A R I U U M 1 38 M I C R N O N	Ant MODER METALS 4 P H O S P H O R O U S 4 55 70 M I C R O N	ATE Z I N C 183 10 M I C R R O O N

omments are advisory only and are based on the assumption that the sample and data submitted are valid. Missing lube or unit time limits the evaluation. No warranty is expressed or

LEAP[™] is a service mark and Monolec[®] is a registered trademark of Lubrication Engineers, Inc. HiPerSYN[®] is a registered trademark of Chevron Products Company.

Based on actual user experience. Individual results may vary. Not intended to supersede manufacturer specifications.

SIC 2675 LI70791 05-10

www.LElubricants.com 800-537-7683